# Create random input and output data x = np.linspace(-math.pi, math.pi, 2000) y = np.sin(x)
# Randomly initialize weights a = np.random.randn() b = np.random.randn() c = np.random.randn() d = np.random.randn()
learning_rate = 1e-6 for t inrange(2000): # Forward pass: compute predicted y # y = a + b x + c x^2 + d x^3 y_pred = a + b * x + c * x ** 2 + d * x ** 3
# Compute and print loss loss = np.square(y_pred - y).sum() if t % 100 == 99: print(t, loss)
# Backprop to compute gradients of a, b, c, d with respect to loss grad_y_pred = 2.0 * (y_pred - y) grad_a = grad_y_pred.sum() grad_b = (grad_y_pred * x).sum() grad_c = (grad_y_pred * x ** 2).sum() grad_d = (grad_y_pred * x ** 3).sum()
# Update weights a -= learning_rate * grad_a b -= learning_rate * grad_b c -= learning_rate * grad_c d -= learning_rate * grad_d
print(f'Result: y = {a} + {b} x + {c} x^2 + {d} x^3')
dtype = torch.float device = torch.device("cpu") # device = torch.device("cuda:0") # Uncomment this to run on GPU
# Create random input and output data x = torch.linspace(-math.pi, math.pi, 2000, device=device, dtype=dtype) y = torch.sin(x)
# Randomly initialize weights a = torch.randn((), device=device, dtype=dtype) b = torch.randn((), device=device, dtype=dtype) c = torch.randn((), device=device, dtype=dtype) d = torch.randn((), device=device, dtype=dtype)
learning_rate = 1e-6 for t inrange(2000): # Forward pass: compute predicted y y_pred = a + b * x + c * x ** 2 + d * x ** 3
# Compute and print loss loss = (y_pred - y).pow(2).sum().item() # .item() converts a tensor to a Python number if t % 100 == 99: print(t, loss)
# Backprop to compute gradients of a, b, c, d with respect to loss grad_y_pred = 2.0 * (y_pred - y) grad_a = grad_y_pred.sum() grad_b = (grad_y_pred * x).sum() grad_c = (grad_y_pred * x ** 2).sum() grad_d = (grad_y_pred * x ** 3).sum()
# Update weights using gradient descent a -= learning_rate * grad_a b -= learning_rate * grad_b c -= learning_rate * grad_c d -= learning_rate * grad_d
print(f'Result: y = {a.item()} + {b.item()} x + {c.item()} x^2 + {d.item()} x^3')
dtype = torch.float device = torch.device("cpu") device = torch.device("cuda:0") # Uncomment this to run on GPU
# 创建张量来保存输入和输出。 # 默认情况下,requires_grad=False,这表示我们不需要这样做 # during the backward pass,计算关于这些张量的梯度。 x = torch.linspace(-math.pi, math.pi, 2000, device=device, dtype=dtype) y = torch.sin(x)
# 为权重创建随机张量。对于三阶多项式,我们需要 # 4 weights: y = a + b x + c x^2 + d x^3 # 设置 requires_grad=True 表示我们希望使用 # 关于这些张量,during the backward pass a = torch.randn((), device=device, dtype=dtype, requires_grad=True) b = torch.randn((), device=device, dtype=dtype, requires_grad=True) c = torch.randn((), device=device, dtype=dtype, requires_grad=True) d = torch.randn((), device=device, dtype=dtype, requires_grad=True)
learning_rate = 1e-6 for t inrange(2000): # Forward pass: 使用张量运算计算预测 y。 y_pred = a + b * x + c * x ** 2 + d * x ** 3
# 使用张量运算计算并打印 loss # Now loss is a Tensor of shape (1,) # loss.item() gets the scalar value held in the loss. loss = (y_pred - y).pow(2).sum() if t % 100 == 99: print(t, loss.item())
# Use autograd 计算向后传递。这个调用将计算 # 关于所有张量的损失梯度 with requires_grad=True. # After this call a.grad, b.grad. c.grad and d.grad # 将是张量分别相对于 a,b,c,d 的损失梯度 loss.backward()
# 使用梯度下降手动更新权重。Wrap in torch.no_grad() # 因为权重 requires_grad=True,但我们不需要跟踪它 in autograd. with torch.no_grad(): a -= learning_rate * a.grad b -= learning_rate * b.grad c -= learning_rate * c.grad d -= learning_rate * d.grad
classLegendrePolynomial3(torch.autograd.Function): """ We can implement our own custom autograd Functions by subclassing torch.autograd.Function and implementing the forward and backward passes which operate on Tensors. """
@staticmethod defforward(ctx, input): """ In the forward pass we receive a Tensor containing the input and return a Tensor containing the output. ctx is a context object that can be used to stash information for backward computation. You can cache arbitrary objects for use in the backward pass using the ctx.save_for_backward method. """ ctx.save_for_backward(input) return0.5 * (5 * input ** 3 - 3 * input)
@staticmethod defbackward(ctx, grad_output): """ In the backward pass we receive a Tensor containing the gradient of the loss with respect to the output, and we need to compute the gradient of the loss with respect to the input. """ input, = ctx.saved_tensors return grad_output * 1.5 * (5 * input ** 2 - 1)
dtype = torch.float device = torch.device("cpu") # device = torch.device("cuda:0") # Uncomment this to run on GPU
# Create Tensors to hold input and outputs. # By default, requires_grad=False, which indicates that we do not need to # compute gradients with respect to these Tensors during the backward pass. x = torch.linspace(-math.pi, math.pi, 2000, device=device, dtype=dtype) y = torch.sin(x)
# 创建张量来保存输入和输出。 x = torch.linspace(-math.pi, math.pi, 2000) y = torch.sin(x)
# 在本例中,输出 y 是(x,x^2,x^3)的线性函数 # 我们可以把它看作一个线性层神经网络。让我们准备一下 # 张量(x,x^2,x^3)。 p = torch.tensor([1, 2, 3]) xx = x.unsqueeze(-1).pow(p)
# In the above code, x.unsqueeze(-1) has shape (2000, 1), and p has shape # (3,), for this case, broadcasting semantics will apply to obtain a tensor # of shape (2000, 3)
# Use the nn package to define our model as a sequence of layers. nn.Sequential # is a Module which contains other Modules, and applies them in sequence to # produce its output. The Linear Module computes output from input using a # linear function, and holds internal Tensors for its weight and bias. # The Flatten layer flatens the output of the linear layer to a 1D tensor, # to match the shape of `y`. model = torch.nn.Sequential( torch.nn.Linear(3, 1), torch.nn.Flatten(0, 1) )
# nn 包还包含常用的损失函数的定义;在这个 # 在这种情况下,我们将使用均方误差(MSE)作为损失函数。 loss_fn = torch.nn.MSELoss(reduction='sum')
# Compute and print loss. We pass Tensors containing the predicted and true # values of y, and the loss function returns a Tensor containing the # loss. loss = loss_fn(y_pred, y) if t % 100 == 99: print(t, loss.item())
# Zero the gradients before running the backward pass. model.zero_grad()
# Backward pass: compute gradient of the loss with respect to all the learnable # parameters of the model. Internally, the parameters of each Module are stored # in Tensors with requires_grad=True, so this call will compute gradients for # all learnable parameters in the model. loss.backward()
# 使用梯度下降更新权重。每个参数都是张量,所以 # 我们可以像以前一样访问它的梯度。 with torch.no_grad(): for param in model.parameters(): param -= learning_rate * param.grad
# 创建张量来保存输入和输出。 x = torch.linspace(-math.pi, math.pi, 2000) y = torch.sin(x)
# 准备输入张量(x,x^2,x^3)。 p = torch.tensor([1, 2, 3]) xx = x.unsqueeze(-1).pow(p)
# 使用 nn 包定义我们的模型和损失函数。 model = torch.nn.Sequential( torch.nn.Linear(3, 1), torch.nn.Flatten(0, 1) ) loss_fn = torch.nn.MSELoss(reduction='sum')
# 使用 optim 包定义一个优化器,该优化器将更新 # 这是我们的模型。这里我们将使用 RMSprop; # optim 软件包包含许多其他优化算法。 # RMSprop 构造函数的第一个参数告诉 # 优化它应该更新的张量。 learning_rate = 1e-3 optimizer = torch.optim.RMSprop(model.parameters(), lr=learning_rate) for t inrange(2000): # Forward pass: compute predicted y by passing x to the model. y_pred = model(xx)
# 计算并打印损失。 loss = loss_fn(y_pred, y) if t % 100 == 99: print(t, loss.item())
# Before the backward pass, use the optimizer object to zero all of the # gradients for the variables it will update (which are the learnable # weights of the model). This is because by default, gradients are # accumulated in buffers( i.e, not overwritten) whenever .backward() # is called. Checkout docs of torch.autograd.backward for more details. optimizer.zero_grad()
# 反向传递:计算模型参数的损失梯度 loss.backward()
# 在优化器上调用 step 函数会更新其参数 optimizer.step()
linear_layer = model[0] print(f'Result: y = {linear_layer.bias.item()} + {linear_layer.weight[:, 0].item()} x + {linear_layer.weight[:, 1].item()} x^2 + {linear_layer.weight[:, 2].item()} x^3')
# 创建张量来保存输入和输出。 x = torch.linspace(-math.pi, math.pi, 2000) y = torch.sin(x)
# 通过实例化上面定义的类来构建我们的模型 model = Polynomial3()
# 构造我们的损失函数和优化器。 # The call to model.parameters() in the SGD constructor 将会包含可学习的参数 # of the nn.Linear module which is members of the model. criterion = torch.nn.MSELoss(reduction='sum') optimizer = torch.optim.SGD(model.parameters(), lr=1e-6) for t inrange(2000): # 向前传递:通过将 x 传递给模型来计算预测的 y y_pred = model(x)
# Compute and print loss loss = criterion(y_pred, y) if t % 100 == 99: print(t, loss.item())
# Zero gradients, perform a backward pass, and update the weights. optimizer.zero_grad() loss.backward() optimizer.step()
classDynamicNet(torch.nn.Module): def__init__(self): """ In the constructor we instantiate five parameters and assign them as members. """ super().__init__() self.a = torch.nn.Parameter(torch.randn(())) self.b = torch.nn.Parameter(torch.randn(())) self.c = torch.nn.Parameter(torch.randn(())) self.d = torch.nn.Parameter(torch.randn(())) self.e = torch.nn.Parameter(torch.randn(()))
defforward(self, x): """ For the forward pass of the model, we randomly choose either 4, 5 and reuse the e parameter to compute the contribution of these orders. Since each forward pass builds a dynamic computation graph, we can use normal Python control-flow operators like loops or conditional statements when defining the forward pass of the model. Here we also see that it is perfectly safe to reuse the same parameter many times when defining a computational graph. """ y = self.a + self.b * x + self.c * x ** 2 + self.d * x ** 3 for exp inrange(4, random.randint(4, 6)): y = y + self.e * x ** exp return y
# 创建张量来保存输入和输出。 x = torch.linspace(-math.pi, math.pi, 2000) y = torch.sin(x)
# 通过实例化上面定义的类来构建我们的模型 model = DynamicNet()
# 构造我们的损失函数和优化器。训练这个奇怪的模特 # vanilla stochastic gradient 很难,所以我们使用动量 criterion = torch.nn.MSELoss(reduction='sum') optimizer = torch.optim.SGD(model.parameters(), lr=1e-8, momentum=0.9) for t inrange(30000): # Forward pass: Compute predicted y by passing x to the model y_pred = model(x)
# Compute and print loss loss = criterion(y_pred, y) if t % 2000 == 1999: print(t, loss.item())
# Zero gradients, perform a backward pass, and update the weights. optimizer.zero_grad() loss.backward() optimizer.step()